

NANOCI

Testing innovative bio-funcionalized compounds for the ear

Sheffield 30. August 2014

NANOCI

Figure 1.3-1. Schematic view of the project workflow and of work package interdependences.

Bioassays

Task 4.1Murine Bioassay

UT (Lead), Duration: M01 – M36

- Screening of neurotrophin-like compounds
- Testing of 3D nanomatrices
- Test electrode array surfaces

Task 3.1: Interface-dependent stimulation patterns UNIBE (Lead), MED-EL M01 – M36

- MEA technology
- To develop coding and signal shaping strategies

Task 6.4: In vivo bioassay with guinea pigs

UT (Lead), MED-EL M01 – M36

- Delivery of 3D nanomatrix into the deafened cochlea
- Chronical implantation
- physiological measurements
- Cochlear histology

Methods

Neurite index = number of intersections x distance

Screening

Screening of TrkB agonists

TrkB agonist	Literature		
LM22A-1	<u>Massa</u> et al. 2010, The Journal of Clinical Investigation		
LM22A-4	<u>Massa</u> et al. 2010, The Journal of Clinical Investigation		
Deoxygedunin	<u>lang</u> et al. 2010, <i>PLOS one</i>		
7,8-Dihydroxyflavone	Jang et al. 2010, PNAS Yu et al. 2013, The Journal of Neuroscience		
7,8,3`-Trihydroxyflavone	Yu et al. 2012, Biochemical and Biophysical Research Communications Yu et al. 2013, The Journal of Neuroscience		

Screening of BDNF mimetics

by Pascal Senn

Methods

see also Poster Frick et al.

Tolerability / Toxicity

	3-D nanomatrices	Handling	Stability	Tolerability
В	Pam-AAAAGGGEIKVAV (Silva et al. Science, 2004) Background	+	+	+
1	BD™ PuraMatrix™ Peptide Hydrogel	+	+	+
2	HydroMatrix [™] Peptide Hydrogel	+	+	+
3	3-D Life Dextran-CD Hydrogel Kit	+	+	+
4	3-D Life PVA-CD Hydrogel Kit	+	+	+
5	3-D Life Dextran-CD + PVA-CD Hydrogel Kit	+	+	+
6	AuxiGel™	-	N. D.	N. D.
7	HyStem [™] -HP Cell Culture Scaffold Kit	+	-	+
8	Corning [®] Matrigel [®] Matrix	+	-	+

 \rightarrow

nanomatrices were highly tolerable and showed no toxicity on growing spiral ganglion neurites.

Tolerability / Toxicity

 \rightarrow The presence of 3-D nanomatrices does not influendce neurite growth

Testing of 3-D nanomatrices modified by different neurotrophic epitopes and/or neurotrophin-mimetics for functionality, biocompatibility and biostability

Nanomatrix attraction and penetration

3-D Life Dextran-CD Hydrogel

 \rightarrow Neurites were shown to grow on the 3-D nanomatrix surface.

Strategies to improve nanomatrix attraction

Strategies to improve nanomatrix attraction

Assay to test electrode array surfaces

Development of MED-EL silicone rings

Direct application into culture chambers

Assay to test electrode array surfaces

MED-EL silicone rings in the spiral ganglion explant culture

SGN culture on MEA

-perform extracellular recordings

-recordings form a population of SGN and not single neurons like in patch clamp -customize electrode surface (material, size, coating)

Physiology department University of Bern

Spontaneous activity of SG auditory neurons in vitro (d18) on MEA

Basal

Data by Stefan Hahnewald, IEB on Tuesday

Response profile upon stimulation from MEA electrode

Patterning approaches to increase recoding efficiency

Patterning approaches to increase recoding efficiency

Neurons nuclei

In vivo experiments

- Deafening procedure
- Histology
- Physiology
- Cochlea-Implant Surgery

Compound Action Potential (CAP)

CAP-Threshold measurement

Müller et al., unpublished

Deafening – Surgical approach

- Retroauricular approach
- Opening the bulla
- CAP-Electrode
- 1 ml syringe + 30G needle to fill the bulla with
- kanamycin/furosemide solution
- After exposure time rinse with Ringer solution

Audiology

- Summary:
 - Group 1 (full dose, full time):
 79% deaf
 - Group 2 (full dose, half time):
 - 100 % deaf
 - Group 3, 4 (half dose/half time):
 - 80%, 53%
 but steady effect
 - Group 5, 6:
 - no hearing loss

Histology

Histology

see Poster Bako et al.

500 µm

20 µm

(45/32645.45)*10⁶= 1378.44 cell/mm²

"Form" like ring at 4 mm •

- Retroauricular approach
- Opening the bulla
- CAP-Electrode
- Cochleostomy
- CI implantation
- Implant-embedding

100

•Normal hearing guinea pig

CAP response

click

eCAP response

biphase click

100 µm

to be continued ...